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Abstract

In this work, we review schemes for solving nonlinear systems of algebraic equations with convergence order
larger than two that can be viewed as higher-order extensions of the Newton method, i.e., schemes that only
require the function f , its derivative, and an initial guess x0. We group the schemes into three categories to
structure them. The publication is supplemented by an easy-to-use high-accurate Matlab code.
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1. Introduction

In this publication, we review and group recent (and not so recent) modifications to Newton’s method
for solving nonlinear equations of form

f(x) = 0, (1)

where f is a vector-valued function f : Rn → Rn. The classical Newton method approximates a solution x
to (1) by a sequence (xk)k∈N

1, with x0 ∈ Rn given, and xk+1 for k ∈ N defined through

xk+1 = xk − f ′(xk)
−1f(xk). (Newton)

Under certain well-established conditions on both f and x0, one can show that the sequence (xk)k∈N con-
verges quadratically to x, i.e.,

∥x− xk+1∥ ≤ C∥x− xk∥2.

Already in 1984, Potra and Pták [1] (cited from [2]) have introduced the iterative method

yk = xk − f ′(xk)
−1f(xk)

xk+1 = xk − f ′(xk)
−1 (f(xk) + f(yk)) .

(PP1984)

This method is sometimes called two-point Newton method with frozen derivative, see [3], and is a very simple
modification of Newton’s method that results in third order convergence. In this work, our interest is on
extensions of the schemes (Newton) and (PP1984) and related schemes that reach p−th order convergence
with p > 2. Due to efficiency reasons, we restrict ourselves to methods involving at most Jacobians f ′(x)
(and not any second, third, ... derivatives); and also to methods that can handle n > 1 as well.

Please note that this is a survey on recent literature, meaning literature after 2000. As it happens often
in research, some methods have been rediscovered and are in turn older methods, see [4] who identify the
book by Traub from the 60s [5] as an important source of iterative schemes.
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This paper is equipped with a well-documented Matlab code that can be downloaded as supplementary
material. All methods listed in this work are implemented in variable precision arithmetic, such that up to
10,000-digits are taken into account. While this might seem from a practical point of view rather unnecessary,
it has the advantage that especially the very high convergence orders can be seen numerically.

We have identified three classes of schemes:

• Forward-quadrature based schemes, see Sec. 2;

• backward-quadrature based schemes, see Sec. 3;

• and generalized methods that can be written in the form of Xiao’s schemes [21], see Sec. 4.

The paper’s structure is along these three categories.

2. Forward-quadrature-based methods

In this section, we list the various methods that can be found in literature. Many of these methods
can be motivated through the observation that the root-finding problem can also be seen as the problem of
finding the exact value of an integral. More precisely, for some given xk, there holds

0 ≡ f(x) = f(xk) +

∫ 1

0

d

dτ
f(xk + τ(x− xk))dτ = f(xk) +

∫ 1

0

f ′(xk + τ(x− xk))dτ · (x− xk). (2)

Approximating the integral with a suitable method, and replacing the last x through xk+1, yields an iteration
method. To be more precise, let us consider a generic quadrature formula given by∫ 1

0

f ′(xk + τ(x− xk))dτ ≈
m∑
i=1

ωif
′(xk + τi(x− xk)), (3)

where ω are the quadrature weights and τ are the quadrature points. The most obvious way is to set τ = {0}
and ω = {1} to obtain

0 = f(xk) + f ′(xk)(x− xk).

Replacing x by xk+1 yields the classical Newton’s method (Newton).
In [6], the authors use a general Newton-Cotes formula of order at least one2. However, they do not apply

it to the integral as it is in (3), but they apply it to the integral where x has been replaced by yk, where yk
is one Newton step with starting value xk. This has been motivated by earlier works from Weerakoon and
Fernando, see [7]. Hence,∫ 1

0

f ′(xk + τ(x− xk))dτ ≈
∫ 1

0

f ′(xk + τ(yk − xk))dτ ≈
m∑
i=1

ωif
′(xk + τi(yk − xk)). (4)

In combination with (2), this then leads to the class of schemes

yk = xk − f ′(xk)
−1f(xk),

xk+1 = xk −

(
m∑
i=1

ωif
′(xk + τi(yk − xk))

)−1

f(xk).
(FS2003)

2By ’order one’ of a quadrature formula, we mean that both constant and linear functions are exactly integrated. In this
setting, where

∫ 1
0 . . . dτ is approximated, this comes down to the requirement that

∑m
i=1 ωi = 1 and

∑m
i=1 ωiτi = 1

2
. The

quadrature rule that can be used to derive Newton’s method (m = 1, ω1 = 1 and τ1 = 0) only integrates constants correctly,
and hence does not fall into this scope.
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ω τ Order Abbreviation Ref{
1
2 ,

1
2

}
{0, 1} 3 WF2000 [7, 10, 11]

{1}
{

1
2

}
3 CT2006(2) [10, 8, 9]{

1
6 ,

4
6 ,

1
6

} {
0, 1

2 , 1
}

3 CT2007(1) [12, 13]{
2
3 ,−

1
3 ,

2
3

} {
1
4 ,

1
2 ,

3
4

}
3 CT2007(2) [12, 13]{

1
4 ,

3
4

} {
0, 2

3

}
3 NW2009 [14]

{1− β, β}
{
0, 1

2β

}
3 Wang2011 [15]{

1
2 ,

1
2

} {
1
3 ,

2
3

}
3 Khi2012(1) [13]{

1
8 ,

3
8 ,

3
8 ,

1
8

} {
0, 1

3 ,
2
3 , 1
}

3 Khi2012(2) [13]{
1
2 ,

1
2

} {
1
2 − 1

2
√
3
, 1
2 + 1

2
√
3

}
3 LZH2016(1) [16]{

8
18 ,

5
18 ,

5
18

} {
1
2 ,

1
2 ∓

√
3

2
√
5

}
3 Noor2018 [17]{

1
2 ,

1
2

} {
1
4 ,

3
4

}
3 MPD2021(1) [35]

Table 1: List of schemes based on the quadrature formula (FS2003). The iterations xk+1 = . . . can be derived by putting ω
and τ into (FS2003). For Wang2011, β is a real-valued parameter; for β = 1, one recovers CT2006(2), for β = 1

2
, one recovers

WF2000, for β = 3
4
, one recovers NW2009. Please note that ’order’ denotes order of convergence (if convergence occurs) for

generic f . For special f and, e.g., double roots or the like, it can be more or less. For details, consult (FS2003).

This class of schemes is called mNm (modified Newton method); different schemes can be obtained for
different choices of ωi and τi. In literature, we have found plenty of choices, see Tbl. 1. It has to be noted
that not all schemes listed in the table were originally designed to follow the paradigm laid out here. E.g.,
in [8, 9], a third-order scheme is developed based on the general class of schemes

yk = xk − a(xk)f(xk), xk+1 = xk − f ′(yk)
−1f(xk).

It is observed that this converges cubically for the choice a(xk) =
1
2f

′(xk)
−1 (amongst others). It is an easy

exercise to show that this method coincides with the mid-point Newton method CT2006(2).
One might be tempted to hope that with increasing m, i.e., with a better integral approximation, the

order of the scheme improves. However, it is shown in [6] that the order can not exceed three, see [6, Thm.
1]. In fact, if the quadrature rule is of order one at least, it will always be cubically convergent under
mild conditions on f and sufficient closedness of x0 to x. While the work in [6] is on scalar equations, it is
extended in [18] to systems of equations.

One way to obtain higher order convergence is through combining schemes. Let zk := ΦPP (xk) be the
action of the third-order scheme (PP1984) on xk. Then, one can substitute x in (4) not by yk, but by
zk. This has been realized by Darvishi and Barati [19], and, together with the Simpson rule, leads to the
fourth-order scheme

zk = ΦPP (xk),

xk+1 = xk −
(
1

6
f ′(xk) +

2

3
f ′
(
xk + zk

2

)
+

1

6
f ′(zk)

)−1

f(xk)
(DB2007)

3. Backward-quadrature-based methods

In [20], it is not the function f that is expanded in an integral as in (2), but the inverse function f−1

(that is assumed to exist locally). For this function, there obviously holds f−1(0) = x, and

x ≡ f−1(0) = xk +

∫ 1

0

(f−1)′(f(xk) + τ(0− f(xk)))dτ · (0− f(xk)).
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Again, using a Newton-Cotes of order at least one, one obtains

x ≈ xk +

m∑
i=1

ωi(f
−1)′(f(xk) + τi(0− f(xk))) · (0− f(xk)).

Combined with the rule for differentiation of inverses, (f−1)′(y) =
(
f ′(f−1(y))

)−1
, there holds

x ≈ xk −
m∑
i=1

ωif
′(f−1((1− τi)f(xk)))

−1 · f(xk).

To make this computable, the authors in [20] now assume that the behavior of f is locally linear, i.e., f(x) =
f(xk)+f ′(xk)(x−xk), which implies that the inverse function is given by f−1(y) = f ′(xk)

−1(y−f(xk))+xk.
Note that under this assumption, f−1((1 − τi)f(xk)) = xk − τif

′(xk)
−1f(xk). Ultimately, this then yields

the final scheme given by

y
(i)
k = xk − τif

′(xk)
−1f(xk), 1 ≤ i ≤ m,

xk+1 = xk −
m∑
i=1

ωif
′(y

(i)
k )−1f(xk).

(HH2005)

The scheme is of order three (and not more) under mild conditions on f and x0, as long as the Newton-Cotes
formula used is exact to at least degree one.

There are schemes that are somewhere in-between the forward and the backward quadrature schemes,
and cannot naturally be listed under the general formulation in the next section. The schemes we identified
in this respect are the one by Cordero, Hueso, Torregrosa, Martinez (2010) [32], the sixth-order scheme

yk = xk − 2

3
f ′(xk)

−1f(xk),

zk = xk − 1

2
(3f ′(yk)− f ′(xk))

−1
(3f ′(yk) + f ′(xk))f

′(xk)
−1f(xk)

xk+1 = zk −
(
−1

2
f ′(xk) +

3

2
f ′(yk)

)−1

f(zk)

(CHTM2010)

and the fourth-order one by Grau-Sanchez, Grau and Noguera (2011) [33],

yk = xk − f ′(xk)
−1f(xk),

zk = yk − 1

2
f ′(xk)

−1f(yk)

xk+1 = yk − 2f ′(xk)
−1f(zk).

(GGN2011(1))

4. Generalized methods

In 2022, Xiao [21] has introduced the very general class of schemes that tries to unify several schemes
found in literature. It is assumed that a certain scheme of order p, denoted through Φ, is given3 . Then,
the class of schemes introduced in [21] reads

yk = xk − af ′(xk)
−1f(xk)

zk = Φ(xk, yk)

xk+1 = zk −
(
b I +cf ′(yk)

−1f ′(xk) + df ′(xk)
−1f ′(yk)

)
f ′(xk)

−1f(zk)

(Xi2022)

3In [21], p ≥ 2 is assumed. For this presentation, this is not required.
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[a, b, c, d] Φ(x, y) Order Abbreviation Ref

[1, 0, 0, 0] x− 1
2f

′(y)−1f ′(x)−1 (f ′(x) + f ′(y)) f(x) 2 CT2006(1) [10, 22]

[1, 0, 1, 0] y 4 Chun2006 [23]

[β, 0, 0, 0] x −
(
I + 1

2β

(
I −λ

β

(
I −f′(x)−1f′(y)

))−1 (
I −f′(x)−1f′(y)

))
f′(x)−1f(x) 3/4∗ Ne2008 [24, 25]

[1, 2, 0,−1] y 4 CMT2009(1) [26]

[1, 0, 1, 0] Φ(x, y)∗∗ p+ 2 CHMT2012 [27, 28]

[θ, a1, a2, a3] x 4∗∗∗ SGS2013 [29]

[ 23 , 0, 0, 0] x−
(
23
8 I −f ′(x)−1f ′(y)

(
3 I −9

8f
′(x)−1f ′(y)

))
f ′(x)−1f(x) 4 SA2014(1) [30]

[ 23 ,
5
2 , 0,

−3
2 ] x−

(
23
8 I −f ′(x)−1f ′(y)

(
3 I −9

8f
′(x)−1f ′(y)

))
f ′(x)−1f(x) 6 SA2014(2) [30]

[ 12 ,−1, 2, 0] x− f ′(y)−1f(x) 5 SG2014 [31]

[1, 0, 1, 0] ΦLZH2016(1)(x, y) 5 LZH2016(2) [16]

[1, 0, 1, 0] ΦMPD2021(1)(x, y) 5 MPD2021(2) [35]

Table 2: List of schemes based on the general formula introduced in [21], see (Xi2022). I denotes the identity matrix. For
the definition of ΦLZH2016(1) and ΦMPD2021(1), consult Tbl. 1. Please note that ’order’ denotes order of convergence (if
convergence occurs) for generic f . For special f and, e.g., double roots or the like, it can be more or less. For details, consult
(??).
∗: Order 3 for any choice of λ and β, and order four for λ = 1 and β = 2

3
.

∗∗: Φ is an arbitrary iteration scheme of order p.
∗∗∗: For the choice of the values a1 = − 1

2
, a2 = 9

8
, a3 = 3

8
and θ = 2

3
.

It is shown in [21] that this scheme, given that Φ is of order p ≥ 2, is of order p+ 3 iff a = 1, b = −1, c = 3
2

and d = 1
2 , again under mild conditions on f and x0. Furthermore, it is shown that the scheme is of order

p+ 2, if there holds

b+ c+ d = 1, a(c− d) = 1.

In Tbl. 2, we have listed methods from literature that can be rather naturally cast into this form.

Remark 1. Please note that due to the term zk = Φ(xk, yk), any scheme that can be written in form
xk+1 = Ψ(xk) (so all the schemes shown here so far) can be cast into this framework through the obvious
definition [a, b, c, d] = [0, 0, 0, 0], and Φ(xk, yk) := Ψ(xk). However, for some schemes it is more natural to
do this than for others, see Tbl. 2.

5. Conclusions

In this work, we have listed several higher-order extensions of Newton’s method that have been published
within roughly the last two decades. During our literature study, we came across many more works on related
concepts. Some interesting facts are listed below, without the intention to be anything near a complete list
– the field is vast.

• The schemes in [36] do not work for n > 1 and are hence not listed here. However, we think that this
paper is very interesting, as it gives in Table 1 a very nice overview over other derivative-free iteration
methods for functions f : R → R.

• Some schemes make heavy use of the concept of multivariate divided differences, see, e.g., [3, 37, 38].
We have not included them in this overview here as in the applications we have in mind, the inverse is
not computed explicitly, but its action on a certain vector is computed through a matrix-free Newton-
Krylov scheme. Derivatives are hence avoided at all.
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• In the quadrature-based approaches as seen in Sec. 2–3, the value of the unknown point x is approx-
imated by a standard Newton step. This can obviously also be replaced by a Halley step, involving
second derivatives of f . For an example, see, e.g., [39].

• We did not take into account the schemes presented in [34], as they seemed to be very difficult in their
formulation. Amongst others, they involve f ′(xk)

−3, which is rather impractical in our applications.

• Another interesting field of research is iterative schemes through Adomian decomposition, see, e.g.,
[23]. Here, the unknown x and the function are decomposed into series (for the function a series of
Adomian’s polynomials). This also yields high-order schemes of increasing complexity.

None of the content in this work is new. We hope, however, that this literature overview and the classification
can be of use to some wanting to try schemes beyond Newton’s scheme.
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