In this blogpost, we share findings from the CoMix study which asked pregnant women across Europe about their social contacts and vaccination behaviours during the COVID-19 pandemic
As part of the CoMix social contact study, researchers at LSHTM, Hasselt University and the University of Antwerp collected data from pregnant women, who were asked about the people they'd come into contact with in the previous 24 hours as well as whether they had received a COVID-19 vaccine.
Social contact patterns
Throughout the COVID-19 pandemic, pregnant people were especially encouraged to take precautions to limit their exposure to the virus. These included limiting the number of social contacts they made and avoiding crowded, indoor spaces like shops and restaurants.
Just over 1000 pregnant women took part in the CoMix survey across all 19 countries during the period March 2020 - September 2021. Pregnant women reported slightly fewer social contacts (3.6 contacts per day) on average than people who were not pregnant (4 contacts per day). Pregnant women's social contacts tended more to occur in social settings, as opposed to workplaces. 15-20% of pregnant women who participated in CoMix reported that they spent large parts of the study period in isolation or quarantine. This is compared with 5% of non-pregnant people who took part in the study. During the early months of the pandemic (April-August 2020), the use of face coverings was 15-20% higher among pregnant people than non-pregnant people.
Pregnancy is a time when many rely on extra social support and connection from friends, family and loved ones. These findings highlight the importance of considering the psychosocial needs of pregnant people in outbreak response plans, when stress levels might already be higher due to the outbreak.
Vaccination
Despite the evidence supporting the benefits of the COVID-19 vaccine during pregnancy, perceptions towards getting vaccinated remain largely mixed among most pregnant women. Previous research has shown that pregnant women are more likely to experience hesitation towards getting vaccinated than non-pregnant women of the same age.
During the early months of the COVID-19 vaccine rollout in 2021, vaccination rates were low across all groups but were slightly higher among pregnant women than non-pregnant women in the CoMix study. This pattern changed in May 2021, when the rates of non-pregnant women receiving the vaccine overtook those of pregnant women who took part in the study. Data collected through CoMix from 18 European countries (not including the UK) for June 2021 found that 55% of non-pregnant women had been partially or fully vaccinated. This was compared with just 25% of pregnant women at the same point in time.
These findings are likely due to a mix of factors. During the study period, some countries restricted access among pregnant people to COVID-19 vaccines, while more studies were carried out on vaccine safety within this group. It is also likely, in line with previous research, that some pregnant women remained concerned about taking the COVID-19 vaccine, even after it was ruled safe for use.
Limitations of this study and areas for future research
This study, while shedding important light on the experience of pregnancy during the COVID-19 pandemic, is not without its limitations. It should be noted that more than half of the data for the study came from the UK, which may have meant that differences within other countries did not get picked up in the findings. It is likely that attitudes towards vaccination and perceptions of risk will differ - both within and between countries and over time. As phrases such as ‘self isolation’ and ‘quarantine’ were used subjectively by participants in the survey, it is possible that these terms meant different things to different people.
It is clear that further research is needed in this area to gain a deeper understanding of the impact that the pandemic has on pregnant women, in both the medium and long-term and across jurisdictions. It is clear that the importance of social support for pregnant women must form a critical public health consideration; both for the ongoing COVID-19 pandemic, as well as for future large-scale infectious disease outbreaks.
You can read the article this blog post is based on here. To find out more about the CoMix study, visit our website.
Reflections from the EpiPose team captured at our first face-to-face meeting in Antwerp, 7-8 June 2022
As well as being the first opportunity since the beginning of the project for the EpiPose team to connect in person, our face-to-face meeting in June 2022 provided valuable space for the consortium to reflect on the past 2 years, both as scientists on the frontlines of the COVID-19 pandemic response and as citizens experiencing the COVID-19 pandemic and the restrictions it brought on our daily lives.
Members of the EpiPose team
Led by LSHTM Research Fellow Dr. Rosanna Barnard, the reflective session captured insights from researchers working at all levels - from PhD researchers to Professors - at academic institutions and public health agencies across Europe.
Reflecting on early 2020
The first part of the session focused on team members’ memories of the initial stages of the pandemic. When COVID-19 was first declared a public health emergency of international concern in January 2020, the EpiPose team was scattered across the globe. Researchers, some of whom would not become involved in the project for several months, were everywhere from Hong Kong to Hasselt. The team spoke about the differing public health responses in the various countries, and the concern of seeing delayed action on the part of some governments. And indeed the lack of urgency displayed by some in our own personal circles.
The onset of the pandemic influenced EpiPose researchers on a personal level the same as it did for the majority of the global population. The team spoke about the heightened sense of anxiety at this time, which some pointed out was made worse by rumours and misinformation on social media. Others expressed concern for families and friends, some of whom were living in countries with the highest numbers of cases and deaths.
Highs and lows throughout the pandemic
The next part of the session captured EpiPose researchers’ personal and professional highs and lows throughout the different phases of COVID-19. In reflecting on the past 2 years, many of our reflections chimed with those experienced by the wider public. Team members spoke about the difficulties in seeing people passing away due to COVID-19, the isolation, burn out and being cut off from family and friends, especially those who were living in other countries.
The team also reflected on some personal high points, including the opportunity to witness their children’s learning experience through home-schooling. The introduction of new pets to the household was also mentioned!
When it came to professional highlights, many of the team spoke about their pride in being able to contribute to the COVID-19 response. Several pieces of work or projects were mentioned specifically, including the launch of the Infectieradar participatory surveillance platform, the CoMix study and the response to the emergence of the Alpha variant in England - which entailed a large quantity of high-quality work performed at rapid speed. More broadly, researchers spoke about the collaborative spirit embodied within the EpiPose consortium and the wider scientific community.
Naturally, the pandemic was not without professional challenges for members of the EpiPose team. Researchers spoke about the incredibly high pressure working environment that many now found themselves within, in addition to being unable to collaborate with colleagues in person. The focus on COVID-19 also diverted attention away from other projects and professional interests. The challenge of communicating scientific advice, with all its nuances and uncertainties, to policy makers, the public, and the media was a theme which emerged at several points during the meeting.
While the session was not able to provide solutions to all of these challenges should they arise again in the future, it offered a valuable space for the team to reflect on both individual and collective achievements and debrief on the difficulties inherent in responding to a global pandemic, as well as in living through it.
By Rosanna Barnard and Anna Carnegie, LSHTM
In this blog post, we hear from our colleagues on the European Commission funded RESISTIRÉ project about the valuable work they are doing to analyse the impact of COVID-19 policies on gendered inequalities.
The RESISTIRÉ project collects data on inequalities arising from COVID-19 policies and identifies inspiring initiatives that mitigate these impacts. These insights are then translated into recommendations, operational tools and pilot actions, which aim to find sustainable solutions to gendered inequalities.
To conclude the project’s first research cycle, RESISTIRÉ has developed a set of 8 factsheets to support policymakers, advisers, employers, and civil society organisations in understanding the social, economic, political, and environmental effects of COVID-19 policy responses on gender equality. The factsheets also make practical recommendations for mitigating these effects. These recommendations can also serve to safeguard against the societal impacts of future crises. RESISTIRÉ ’s research and recommendations cover eight domains: gender-based violence, the labour market, the economy, gender-pay and pension gaps, gender care gaps, decision-making and politics, environmental justice; and human and fundamental rights. In this blog post, we summarise the project’s recommendations and research agenda related to gender care gaps.
The gender care gap increased during the pandemic
The COVID-19 crisis has reinforced many pre-existing inequalities while also making them more visible. Lockdowns, and with them the closure of care facilities, strongly impacted people with caring responsibilities, whether it be for children, elderly or disabled people. They also impacted men and women in different ways: as the increased care work was generally performed by women, the gender equality gap was exacerbated. This trend was likely due to the existing gender pay gap: as women tended to earn lower wages on average or be in part-time jobs, they were also more likely than their partners to give up paid work in order to respond to the new household duties.
RESISTIRÉ’s research saw its partners and national researchers collect data on these inequalities in 31 countries across the EU and the UK, Serbia, Turkey and Iceland. Alongside this, they mapped policies and initiatives from civil society that mitigated the impact of COVID-19 policies on vulnerable groups. This collection of best practices – or “Better Stories” – informed discussions with experts and informed the development of new research agendas, pilot actions, and a set of recommendations for policymakers.
RESISTIRÉ ’s recommendations to reduce the gender care gap
RESISTIRÉ ’s recommendations to reduce the impact of policies on the gender care gap are available in more detail in RESISTIRÉ ’s Care and Crisis factsheet. They can be summarised as follows:
A caring workplace is one that recognises the importance of employees’ work-life balance and inclusive workspaces, as well as the fact that care work is demanding and, as such, should be equally divided within households.
A need for further research on the impact of COVID-19 policies on gendered inequalities
RESISTIRÉ recognises that research is not only about finding solutions, but also identifying the questions which have yet to be answered. There is still a lot we don’t know about how inequalities play out during epidemics, as well as how different groups are impacted by the policies enacted. As part of the RESISTIRÉ project, we identified these future research needs across four domains: Care, Work & Pay, Human Rights and Health and Gender-based Violence.
These are detailed in our research agenda, which provides a brief introduction to each topic that requires further research. The identified knowledge gaps are then each outlined in more detail, specifying related research questions that can serve as the foundation for further state-of-the-art research.
The research agenda related to care focuses on the unpaid care work performed at home.
The quantitative data collected within the project clearly indicates that women as a group bore the brunt of the increase in care responsibilities at home. The long-term effect of the increased care responsibilities during the pandemic on women’s (in all their diversity) participation in paid work as well as the effect on their health, however, remains unresearched.
For many men, the lockdown periods provided them a first-time opportunity to be considerably more involved in childcare and household duties. This experience could possibly have lasting effects on gender norms and the gendered division of labour. The second research gap in the domain of care relates to the changing role of men (in all their diversity) and masculinity with regards to care responsibilities pre-, during and post-pandemic.
Finally, the project’s research findings point towards a re-traditionalisation of gender roles associated with care responsibilities. They also indicate that the division of care responsibilities is influenced by intersectional gendered causes. There is however a lack of data to analyse the intersections between the gender care gap and inequalities relating to race/ethnicity, nationality, sexuality and gender identity. There is therefore an overall research gap related to the short- and long-term effects on intersectional gendered norms and behaviors associated with care responsibilities.
For more information:
Read the Research Agenda
Watch the Research Agenda webinar “Inequalities in the Spotlight”
With thanks to the RESISTIRÉ team for this contribution.
In our latest blogpost, we delve into the initial findings from the CoMix study in Austria. CoMix Austria is delivered with the support of our partners at Gesundheit Österreich.
What is CoMix?
The CoMix study is a groundbreaking social survey running across Europe, in which participants are asked to record the number of people they have come into contact with in the previous 24 hours. Participants are asked who they came into contact with (e.g. the age-group of the other person/s) and where the contact took place (e.g. whether at home or work, indoors or outdoors). They also answer questions about their attitude towards COVID-19.
The survey began running in Austria on 22nd December 2020. People respond to the survey every two weeks. Adults are asked about their own behavior and parents are asked to respond on behalf of their children. This blogpost is based on findings covering the time period between December 2020-April 2021. Between roughly 550-1500 adults took part in the survey during this timeframe. Participants tended to drop off as the weeks progressed, which is typical for surveys of this nature.
According to data from the OxCGRT Government Stringency Index, which compares government policy responses to the pandemic between countries, Austria had some of the strictest interventions during the period in question. Schools were closed in all circumstances at the end of December 2020, reopening partially in February 2021 and closing again at the beginning of April. Stay at home orders were in place with exceptions made for daily exercise, grocery shopping, and other essential trips; and face coverings were required in all public places.
As might be expected, between December 2020 and April 2021 the majority of contacts individuals had were in the home. There was a slight increase in work-based contacts at the end of January 2021. Participants were more likely to spend a longer time with the face-to-face contacts they made (over 4 hours) as opposed to seeing people for short bursts of time. On average, older adults (those aged 60 and above) tended to have fewer contacts than those in younger age groups. The average number of contacts that adults of all ages had tended to reduce as the survey progressed.
The findings differed for children, particularly those who attended school. Their daily number of contacts were closer to 10, whereas for adults (across all age groups) the average was between 2 and 4. However, it should be noted that the response numbers from the children’s survey were very low (circa 300) and covered a shorter period of time (early February-early April 2021), meaning they should be interpreted with caution.
What does this tell us?
When it comes to attitudes towards COVID-19, the results of the study indicate that most people in Austria support intervention measures as they are aware that a COVID-19 infection can lead to a serious illness either for themselves or someone in their social environment.
Data from the CoMix study can provide us with important information about people’s mixing patterns throughout the course of the pandemic.
You can also stay updated on CoMix findings across Europe by visiting our website or following us on twitter.
In our latest blogpost, we delve into the findings from the first year of CoMix study data in England.
What is CoMix?
The CoMix study is a groundbreaking social survey running across Europe, in which participants are asked to record the number of people they have come into contact with in the previous 24 hours. Participants are asked who they came into contact with (e.g. the age-group of the other person/s) and where the contact took place (e.g. whether at home or work, indoors or outdoors). They also answer questions about their attitude towards COVID-19.
In England, the study has been running since March 2020 and almost 20,000 people have taken part. The individuals participating in the survey are representative of the English population as a whole in terms of age and gender.
Between March 2020 and March 2021, England experienced 3 national lockdowns, interspersed with smaller, more localised restrictions. EpiPose researchers from LSHTM and UHasselt have taken a deeper dive into the first years’ worth of data to discover the ways in which people’s behaviour and movements have changed over the course of the pandemic.
They compared the results from CoMix with data collected from earlier surveys which measured social contacts before the onset of COVID-19.
The impact of restrictions
As might be expected, government restrictions had a significant impact on the number of contacts people maintained; these reduced significantly during each national lockdown. Under full lockdown conditions where schools remained closed, working-age(18-59 years) people’s social contacts dropped to an average of 2.39. This is down from an average of 11.7 before the pandemic.
However, lockdowns were not the only factor at play. Government restrictions were relaxed in Summer 2020. Although in-person contacts increased during this phase, people’s social contacts did not return to pre-pandemic levels. Among working-age adults, the average number of reported contacts during periods of relaxation was 4.93. Around half the number reported before the onset of COVID-19.
Even during the Summer 2020 relaxation, social mixing did not really begin to increase until the government introduced incentives encouraging people to eat out at bars and restaurants.
Individual differences
Some groups were likely to have more social contacts than others. For example, younger people - and especially those of school-age - typically had a greater number of contacts than older age-groups. Naturally, social contacts were tied to school reopenings. Young people’s contacts declined steeply when schools were closed, though this data should be interpreted with caution as contacts were reported by a parent rather than the child. People who worked part-time tended to have more social contacts than those in full-time work or the self-employed. Income did not appear to be a factor in determining how many social contacts an individual maintained.
People’s perception of risk also influenced their mixing patterns. People who were less worried about becoming seriously ill from COVID-19 tended to have more social contacts than those who perceived the virus as a bigger threat. Similarly, those who fell into “high-risk” categories typically reported fewer social contacts than those who did not.
How to interpret these results?
Like any study of this kind, CoMix is not without limitations. People were recruited to the survey through the internet (e.g. email and social media), which not everyone has access to. Additionally, since adult participants self-report their social contacts and children’s contacts are reported by a parent, there is a chance that they may not recall every contact they had.
Taking these points into consideration, the data collected in the survey still provides us with vital insights into people’s behaviour over the course of the pandemic. The findings can help policy makers think about the interventions which are likely to be successful in reducing contacts - and therefore curbing the spread of COVID-19 - as well as other factors which may influence people’s decisions.
The study is available to read in full here.
***This research is a pre-print and has not been peer-reviewed***
In this blogpost, we hear about how EpiPose researchers from the Universities of Hasselt and Antwerp used data from the CoMix study to investigate the impact of lockdown and the relaxation measures in Belgium.
To curb the spread of COVID-19, Belgium entered a lockdown March 2020 which saw the closure of schools, universities, most workplaces and non-essential shops, and banned public gatherings. From early May, the Belgian government began to gradually lift restrictions. This was before vaccines became readily available. Few people were immune to the virus and the potential for another outbreak was of pressing concern.
What did they do?
The team used a mathematical model to investigate the different phases of Belgium’s exit strategy. Assessing each phase for the potential impact on rates of COVID-19 transmission.
The researchers needed to understand how patterns of social interaction might change over the course of the exit strategy - and the effect this could have on the spread of the virus. To generate realistic scenarios, they compared data on the number of people an individual came in close contact with (their ‘social contacts’) before the pandemic with information from during lockdown. They later cross-checked their findings with data collected from the CoMix study. CoMix is a survey which has been running throughout the pandemic and asks participants to record the number of people they came into close contact with in the previous 24 hours. Comparing their existing findings with the data from CoMix, the researchers got the same results.
What did they find?
The model developed by the team was able to accurately describe the first wave of the pandemic, and initial exit strategy. It showed that reopening leisure activities would lead to the biggest increase in COVID-19 cases, followed by reopening workplaces. Reopening schools was less likely than measures like opening bars or restaurants to lead to a sharp rise in infections.
Although they projected that cases would increase when Belgium exited lockdown, they found that this was not likely to lead to the wave of serious infections - and hospitalisations - as what was observed in the early stages of the pandemic. This could be due to people changing their behaviour when in close contact with others, for example by wearing masks. Or it could be the result of weather changes or other factors. People’s behaviour is constantly changing as the epidemic progresses, and it is important to carry out more research in this field to allow researchers to predict future trends.
The team also found that tracking and isolating suspected COVID-19 cases was an effective way to curb the virus’ spread, whilst still allowing some social activities to take place. This demonstrates the vital importance of testing and tracing cases in keeping outbreaks of COVID-19 under control.
In Spring 2021, the UK Government announced a gradual easing of COVID-19 restrictions in England, known as the roadmap out of lockdown.
In this blogpost, we learn how members of the EpiPose team are measuring the potential impact of the roadmap on SARS-CoV-2 transmission.
In late May 2021, the UK government relaxed several restrictions implemented in England as a result of the COVID-19 epidemic (step 3 of the roadmap). These relaxations include: reopening venues such as cinemas and indoor hospitality; lifting most restrictions on socialising outdoors; and allowing people to meet indoors in small groups. At the end of June 2021, the UK Government hopes to lift all legal limits on social contact (step 4 of the roadmap).
These changes increase the potential for the SARS-CoV-2 virus to spread. However, the strong rollout of the country’s vaccination programme is a cause for optimism. So, what impact will the roadmap have on rates of transmission?
On the 5th of May 2021, EpiPose researchers at the London School of Hygiene and Tropical Medicine presented a report addressing this question to the Scientific Pandemic Influenza Group on Modelling (SPI-M). SPI-M reports to the Scientific Advisory Group for Emergencies (SAGE), who provide scientific and technical advice to UK government decision makers during emergencies. The evidence presented by three modelling groups to SPI-M and SAGE is available on the UK government website.
What they did
The team at LSHTM have developed a model that can project potential future transmission dynamics of SARS-CoV-2. The model used various data sources relevant to England. Sources include Google Community Mobility data and CoMix contact survey data, which are used to estimate the way that people mix over time in different settings (e.g. shops, pharmacies and train stations). Public health data on current vaccination coverage and future vaccination rates was used to estimate the number of people who would have additional protection provided by vaccines in the weeks ahead.
The effect of relaxing restrictions will depend heavily on people’s behaviour. To get a comprehensive picture, the team projected several different scenarios about behavioural responses to steps 3 and 4 of the roadmap. They made projections for low, medium and high levels of in-person interaction and considered scenarios in which immunity (from vaccination or previous exposure to the virus) both did and did not decrease over time.
Importantly, the team also looked at what might happen to SARS-CoV-2 transmission if new variants of concern (so called VOCs), which were more infectious or were able to evade immunity, were to emerge.
What they found
Assuming no new variants of concern emerge, the EpiPose modellers predict that the easing of restrictions could push the effective reproduction number* above 1, leading to another wave of infections, hospitalisations and deaths during the summer months of 2021. The severity of this wave will depend on several factors, including:
The emergence of new variants of concern could paint a more worrying picture, according to the team’s projections, and would likely lead to large increases in hospitalisations and deaths. In particular, the emergence of a variant which was able to evade immune protection (developed after being infected by the virus in the past or from vaccinations) may prolong the epidemic.
It is important to remember that these projections are made assuming that no counter-measures are implemented to contain the spread of the virus if transmission were to increase.
How to interpret the results
While these projections have been made using the best available data, the impact of lifting restrictions is difficult to predict with any certainty. The course of the epidemic will depend on how people’s behaviours change in response to relaxing restrictions, awareness of the epidemic itself, as well as other factors such as vaccination rates and vaccine effectiveness.
The full report is available here.
*To find out more about the reproduction number and other commonly-used COVID-19 terms, check out our ‘short guide to COVID-19 terminology’ on the blog!
In this blogpost, we explain what the Infectieradar platform is all about - and why your participation is crucial to its success!
What is Infectieradar?
Infectieradar is a web-based platform which collects data from people living in Belgium and the Netherlands about their current status of health and asks them to record any COVID-19 symptoms they may be experiencing. Alongside health-related information, the survey asks people about their behaviours and attitudes.
Infectieradar is part of a larger network called Influenzanet, a European partnership between various universities and government health agencies. Influenzanet was established during the 2009 H1N1 Pandemic to collect information directly from the general public about symptoms of flu and has grown steadily since then. It is now active in 12 countries across Europe.
Why are platforms like Infectieradar important?
Infectieradar collects information directly from the population, which enables researchers to detect changes in COVID-19 infections at the earliest opportunity. Using web-based platforms like Infectieradar can help researchers and health authorities catch cases which might otherwise have been missed, as existing research has found. For example, we know that not everyone will make an appointment with their doctor when they begin to experience flu-like symptoms, but they may be willing to complete a very short survey. Through collecting information about their symptoms - alongside factors like whether they have spoken to a healthcare professional or are taking any medication - the platform can also alert people to the need to receive medical attention
Asking about behaviours and attitudes provides researchers with vital insights into how the pandemic is unfolding. As recent events have shown, individual behaviour amplified at population level can make a huge difference in being able to contain a health emergency. The information generated by platforms like Infectieradar is crucial not only now whilst we’re in the midst of a pandemic, but also in the longer-term. Proof of this can be seen with Influenzanet, which has been collecting high-quality information on influenza for over a decade. Because the platform was already active prior to the outbreak of COVID-19, it could be readily adapted to respond to this new health emergency.
These platforms are only as good as the data that goes into them, which is why your involvement is invaluable. The more people that sign up, the better the data we’ll be able to capture and the quicker we’ll be able to respond to the virus.
How can I join?
If you live in Belgium, you can sign up to Infectieradar here. If you live in the Netherlands, you can join the platform here.
What will I need to do?
Each week, you’ll be asked to complete a short online survey about your current state of health. This should take no longer than a few minutes to complete.
You can find out more here.
What if I don’t live in Belgium or the Netherlands?
Several countries across Europe have their own platforms which operate similarly to Infectieradar. You can find a list of these by visiting the Influenzanet website.
We wish to offer a huge thanks to everyone who has joined these platforms to date, and to all those who continue to sign up. With your invaluable input, we’re able to monitor the evolution of the pandemic quicker than before, thereby curbing the spread and helping stop the virus in its tracks.
In this latest blogpost, we consider how effective different interventions introduced in England over Summer and Autumn 2020 were on controlling the spread of coronavirus. During this time period, England moved out of a national lockdown, and moved to smaller and localised measures.
The interventions
Areas experiencing higher rates of COVID19 were placed into localised lockdowns, rather than the nationwide closures seen before. The rules varied in different locations, but included: travel bans, non-essential venue closures, and restrictions on meeting indoors.
In mid-September, local lockdowns were supplemented by a number of nationwide restrictions, including:
In October, localised lockdowns were replaced by a three-Tier system where areas were classified; from medium (Tier 1) to high (Tier 2) to very high (Tier 3). The higher the Tier, the greater the restrictions.
The aim of these various restrictions was to reduce people’s social contacts, thereby limiting the potential for coronavirus to spread. The more people an individual comes into contact with, the more likely they are to become exposed to the virus and pass it on to others.
The study
To investigate the impact of these different rules, or ‘interventions’, on controlling the spread of the virus, members of the EpiPose team at the London School of Hygiene & Tropical Medicine used data collected from the CoMix study. They compared the number of social contacts a person recorded in different settings (e.g. school, work or home) before and after the introduction of various restrictions. Additionally, they examined how people’s contacts changed when moving from Tiered restrictions into the country’s second national lockdown in November.
Using CoMix data, the team was able to calculate: 1. The proportion of people whose contacts decreased after restrictions were introduced and 2. The change in the average number of setting-specific social contacts someone had before and after measures were implemented.
They found that participants were more likely to reduce their contacts after measures like the ‘rule of six’ compared to others like the early closure of bars and restaurants. And although the encouragement to work from home did see some people reduce their number of in-person interactions, almost two-thirds of people maintained the same number of social contacts before and after this recommendation was introduced.
The introduction of localised lockdowns appeared to reduce people’s social contacts by a greater amount than under the Tier system. Though it is worth remembering that when the Tier structure came into place, other measures were already in force. There was little change in the average number of contacts people had before and after entering Tiers 1 and 2. Moving into Tier 3 appeared to slightly reduce the average number of contacts a person kept, however the number of study participants who were subject to Tier 3 restrictions was quite small, making this finding difficult to generalise.
The effectiveness of the November lockdown on reducing an individual’s social contacts depended on which Tier they entered from. Those who moved into lockdown from Tier 1 reported the biggest reduction in their average number of contacts. Those moving from Tiers 2 or 3 into lockdown reported fewer changes in their contact patterns, potentially because they were already minimising the number of people they came into contact with.
How should we interpret these findings?
The impact of these measures on reducing a person’s social contacts are decidedly less pronounced than under the first national lockdown in March. Yet, virtually all were successful in limiting the number of contacts people had. Albeit to varying degrees.
It’s also important to consider other factors at play. Many people may have already been limiting their number of in-person interactions prior to the official measures coming into force. For instance, by working from home or limiting contact with friends or family. As some of these restrictions occurred at the same time, and because policies changed rapidly over the course of a few short months, it is difficult to fully attribute changes in people's behaviour to the introduction of specific restrictions.
Taking these factors into account, the findings of this study still provide policymakers with valuable information in considering what kinds of interventions to introduce in response to COVID19.
The full article this blogpost is based on is available to read here: The impact of local and national restrictions in response to COVID-19 on social contacts in England: a longitudinal natural experiment
Reading the coverage of the coronavirus pandemic over the past 12 months, you will likely have noticed many terms which simply weren’t in most of our vocabularies in 2019.
But what do some of these words and phrases mean? And how are they useful for interpreting the course of the pandemic? To kick off our EpiPose blog post series, we explain what some of these terms mean and why they’re used to discuss COVID-19 and within the EpiPose project.
Epidemiology: Epidemiology is the study of how, why and where diseases (or other health-related states or events) develop in a given population. Epidemiologists track the patterns, causes and risk-factors associated with a given disease or health state with the aim of understanding how populations can be healthier. To date, this field of study has proved crucial in the response to COVID-19 and will continue to inform how policy makers respond to the pandemic.
Epidemiological parameters: These are the quantities epidemiologists use to describe a disease (and for an infectious disease, how it spreads), and include many of the items listed below;
Incubation period: This is the time between someone becoming infected with the virus and when they begin to develop symptoms.
Asymptomatic: If a person is asymptomatic, it means that they are infected with the virus but do not develop symptoms.
Presymptomatic: A person who is presymptomatic has been infected with the virus and is not currently showing symptoms. However, they will go on to develop symptoms later. There is a danger that people who are asymptomatic and presymptomatic have the potential to infect a larger number of people because they aren’t aware they’re infected.
R number: The R (or Reproduction) number is the average number of people a person who has been infected will pass a virus onto, over the entire course of that infection. For example, an R value of 5 would mean that once infected, someone would pass the virus to an average of 5 other people. The R number can be reduced if intervention measures (such as school closures or travel restrictions) are put in place to stop a virus from spreading.
K number: While the R number calculates the average number of people someone with the SARS-CoV-2 virus will transmit the virus to, not everyone will transmit to the same number of people. The K number estimates the variation in how many people each person with the virus infects.
Case fatality risk(CFR): The proportion of confirmed COVID-19 cases which prove fatal. This can be calculated by dividing the number of confirmed COVID-19 deaths from the number of confirmed cases.
Infection fatality risk (IFR): This is the proportion of all COVID-19 cases (both diagnosed and not diagnosed) which prove deadly. It’s calculated by dividing the total number of infections by the number of deaths and is a more difficult figure to estimate than the CFR, as it involves identifying COVID-19 cases which may have been missed from official figures.
Vaccine efficacy: This is the % reduction in disease in vaccinated people compared to unvaccinated people in a controlled environment. For instance, in a clinical trial setting.
Vaccine effectiveness: This is the % reduction in disease in vaccinated people compared to unvaccinated people in real-world settings.
And one final question:
Why do we see both COVID-19 and SARS-CoV-2 being used in communication material about the coronavirus?
SARS-CoV-2: stands for severe acute respiratory syndrome coronavirus 2 and is the virus which causes the coronavirus disease. COVID-19: refers to the disease which can be contracted from being exposed to the virus. The World Health Organisation have provided some useful information about why we see both terms being used to discuss coronavirus.
Fully reopening schools could push the reproduction number (R) of SARS-CoV-2 in England above 1.0, potentially putting an end to the decline in new cases, suggests a new pre-print. The modelling study, not yet peer-reviewed, was conducted by members of the EpiPose team and colleagues at the London School of Hygiene & Tropical Medicine (LSHTM).
Schools present more opportunities for the virus to be transmitted so are an important consideration when looking at the spread of COVID-19. In January 2021, the Government in England announced the closure of primary and secondary schools as part of the country’s third national lockdown. However, there are concerns about the potentially damaging impact closures may have on students’ academic development and general wellbeing. To date, the evidence on how effective school closures have been in curbing the spread of the virus remains unclear.
Previous studies suggest children may be less likely than adults to be infected upon exposure to the virus, and may differ in their infectiousness too. To account for these differences, the team applied various scenarios of how susceptible and infectious school-aged children were compared with adults.
The study used data collected from the CoMix study, measuring children and adults’ social contacts during the November 2020 and January 2021 lockdowns, exploring how this behaviour changed with the closure of schools in the latter. This was combined with different estimates of children’s susceptibility (how likely they are to be infected upon contact with an infected individual) and infectiousness (how easily they infect others).
Using official estimates of the current R number, the team estimated the possible increase in R upon opening schools. Across all estimates of children’s infectiousness and susceptibility, the effect of fully reopening schools saw R increase from an assumed baseline of 0.8 to between 1.1-1.5. Partial school reopening - primary or secondary schools only - resulted in lower increases and, dependent on children’s susceptibility and infectiousness, could see R increase to between 0.9-1.2.
These findings offer crucial insights to support decisions about whether, and how, schools should reopen. An R number greater than 1.0 - as some of the estimates in this research predict - signals that the epidemic would begin to grow and that cases are likely to increase.
However, it is important to remember that these estimates will shift based on changes in other factors that affect R, such as changes in relative susceptibility due to variation in ongoing infection rates between age-groups and the emergence of different variants of the virus. Furthermore, our understanding of children’s susceptibility and infectiousness as compared to adults is still evolving and more precise estimates are needed. The situation is likely to change further as we learn more about the new variants of COVID19 and their patterns of transmission.
The study is available to read in full here:
https://cmmid.github.io/topics/covid19/comix-schools.html?678
***This research is a pre-print and has not been peer-reviewed***
The original news story about this study is available at:
https://www.lshtm.ac.uk/newsevents/news/2021/impact-reopening-schools-sars-cov-2-transmission-england