Recent progress in the field of quantum sensing has demonstrated the possibility to use NV centres diamond spin qubits to detect external nuclear spins in close proximity, allowing thus nanoscale NMR at room temperature. Compared to classical NMR devices, these diamond quantum sensors enable to perform spectrally selective detection on small volumes (~ 1 pL), and do not require the applications of strong, homogeneous magnetic fields and thus the use of bulky magnet. Miniaturized quantum NMR devices could in particular be used in the pharmaceutical industry, for drug discovery and drug product development.
The QST division at Imo-Imomec works on demonstrating the practical applicability of nanoscale quantum NMR detection, by bringing it from the lab table towards real-world applications in the field of pharmaceutical analysis. Our objective is the development of novel types of quantum NMR devices based on 2D arrays of shallow NV centres in diamond. While current methods are based on the optical readout of NV spins, we aim at developing photoelectrically readout quantum NMR devices. The use of this method is expected to improve the detection sensitivity and thus to lead to faster measurements, enabling to perform dynamical detection in biological or chemical environment with high signal-to-noise ratio.