Complete list of publications

Here you can find the complete list of my publications, not only those with UHasselt affiliation. I am trying to keep it up to date. Please, feel free to contact me.

Book

  1. Numerical Mathematics and Advanced Applications - ENUMATH 2017Lecture Notes in Computational Science and Engineering, Vol. 126, Editors: F.A. Radu, K. Kumar, I. Berre; J.M. Nordbotten, I.S. Pop, Springer International Publishing, 2019

Refereed journal publications:

  1. Investigation of different throat concepts for precipitation processes in saturated pore-network models, Transp. Porous Med., accepted, with T. Schollenberger, C. Bringedal, R. Helmig, C. Rohde, L. von Wolff
  2. Who acquires infection from whom? A sensitivity analysis of transmission dynamics during the early phase of the COVID-19 pandemic in Belgium, J. Theor. Biol. Volume 581 (2024), 111721, with L. Angeli, C. Pereira Caetano, N. Franco, S. Abrams, P. Coletti, I. Van Nieuwenhuyse, N. Hens (see also the SSRN preprint).
  3. Space-time upscaling of reactive transport in porous media, Adv. Water Res. Volume 176 (2023), 104443, with N. Suciu and F.A. Radu (see also arXiv preprint arXiv:2112.10692)
  4. Iterative methods with nonconforming time grids for nonlinear flow problems in porous mediaActa Math. Vietnam. Volume 48 (2023), pp. 29-49, with Thi-Thao-Phuong Hoang.
  5. Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scaleJ. Differential Equations Volume 343 (2023), pp. 90-151, with M. Gahn (see also arXiv preprint arXiv:2205.03077).
  6. Upscaling of a Cahn--Hilliard Navier--Stokes Model with Precipitation and Dissolution in a Thin StripJ. Fluid Mech. Volume 941 (2022), A49, with L. von Wolff (see also CMAT Report UP-21-05, Hasselt University).
  7. Upscaling a Navier-Stokes-Cahn-Hilliard model for two-phase porous-media flow with solute-dependent surface tension effectsAppl. Anal. Volume 101 (2022), pp. 4171-4193, with S. Sharmin, M. Bastidas, C. Bringedal (see also CMAT Report UP-21-09, Hasselt University).
  8. Dynamic effects during the capillary rise of fluids in cylindrical tubesLangmuir Vol. 38 (2022), pp. 1680–1688, with S.B. Lunowa, A. Mascini, C. Bringedal, T. Bultreys, V. Cnudde (see also CMAT Report UP-21-07, Hasselt University); also, see the supporting information.
  9. Global existence of a weak solution to unsaturated poroelasticityESAIM Math. Model. Numer. Anal. Vol. 55 (2021), pp. 2849–2897, with J.W. Both, I. Yotov (see also CMAT Report UP-19-07, Hasselt University)
  10. Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditionsJ. Differential Equations Vol. 289 (2021), pp. 95-127, with M. Gahn, M. Neuss-Radu (see also CMAT Report UP-20-07, Hasselt University).
  11. On an averaged model for immiscible two-phase flow with surface tension and dynamic contact angle in a thin stripStud. Appl. Math. Vol. 147 (2021), pp. 84-126, with S.B. Lunowa, C. Bringedal (see also CMAT Report UP-20-06).
  12. Efficient Solvers for Nonstandard Models for Flow and Transport in Unsaturated Porous Media, ROMAI Journal 18 (2021), pp. 31-73, with D. Illiano, J.W. Both, F.A. Radu.
  13. Iterative schemes for surfactant transport in porous mediaComput. Geosci. Vol. 25 (2021), pp. 805–822, with D. Illiano, F.A. Radu (see also CMAT Report UP-19-05, Hasselt University).
  14. A two-scale iterative scheme for a phase-field model for precipitation and dissolution in porous mediaAppl. Math. ComputVol. 396 (2021), 125933, with M. Bastidas Olivares, C. Bringedal (see also CMAT Report UP-20-05).
  15. Numerical homogenization of non-linear parabolic problems on adaptive meshesJ. Comput. Phys.  Vol. 425 (2021), 109903, with M. Bastidas Olivares, C. Bringedal, F.A. Radu (see also CMAT Report UP-19-04).
  16. Linearized domain decomposition methods for two-phase porous media flow models involving dynamic capillarity and hysteresisComput. Methods Appl. Mech. Eng. Vol 372 (2020), 113364, with S.B. Lunowa, B. Koren (see also CMAT Report UP-20-03).
  17. A benchmark study of the multiscale and homogenization methods for fully implicit multiphase ow simulations with adaptive dynamic mesh (ADM),  Adv. Water Res.  Vol 143 (2020), 103674, with H. Hajibeygi, M. Bastidas Olivares, M. HosseiniMehr, M.F. Wheeler (see also CMAT Report UP-19-08).
  18. On upscaling pore-scale models for two-phase flow with evolving interfacesAdv. Water Res. Vol. 142 (2020), 103646, with S. Sharmin, C. Bringedal (see also CMAT Report UP-20-01).
  19. Mathematical Modeling, Laboratory Experiments, and Sensitivity Analysis of Bioplug Technology at Darcy ScaleSPE Journal Vol. 25 (2020), SPE-201247-PA, with D. Landa-Marbàn, G. Bødtker, B.F. Vik, P. Pettersson, K. Kumar, F.A. Radu (see also CMAT Report UP-19-16, Hasselt university).
  20. Phase field modeling of precipitation and dissolution processes in porous media: Upscaling and numerical experimentsMultiscale Model. Simul. Vol. 18 (2020), pp. 1076-1112, with C. Bringedal, L. von Wolff (see also CMAT Report UP-19-01, Hasselt University).
  21. An upscaled model for permeable biofilm in a thin channel and tubeTransp. Porous Med. Vol. 132 (2020), pp. 83–112, with D. Landa-Marban, G. Bodtker, K. Kumar, and F.A. Radu (see also CMAT Report UP-18-09, Hasselt University).
  22. Fronts in two-phase porous media flow problems: effects of hysteresis and dynamic capillarityStud. Appl. Math. Vol. 144 (2020), pp. 449–492, with K. Mitra, T. Koppl, C.J. van Duijn, R. Helmig (see also CMAT Report UP-19-06, Hasselt University).
  23. Formal upscaling and numerical validation of fractured flow models for Richards' equationJ. Comput. Phys. Vol. 407 (2020), 109138, with K. Kumar, F. List and F.A. Radu (see also CMAT Report UP-19-03, Hasselt University).
  24. Rigorous upscaling of unsaturated flow in fractured porous mediaSIAM J. Math. Anal.Vol. 52 (2020), pp. 239–276, with F. List, K. Kumar and F.A. Radu (see also CMAT Report UP-18-04, Hasselt University).
  25. Towards more predictive and interdisciplinary climate change ecosystem experiments, Nat. Clim. Chan. Vol. 9 (2019), pp. 809-816, with F. Rinneau, R. Malina et al.
  26. A pore-scale study of transport of inertial particles by water in porous mediaChem. Eng. SciVol. 207 (2019), pp. 397-409, with M.A. Endo Kokubun, A. Muntean, F.A. Radu, K. Kumar, E. Keilegavlen, K. Spildo (see also CMAT Report UP-19-02, Hasselt University).
  27. A pore-scale model for permeable biofilm: numerical simulations and laboratory experimentsTransp. Porous Med.  Vol. 127 (2019), pp. 643-660, with D. Landa-Marban, N. Liu, K. Kumar, P. Pettersson, G. Bodtker, T. Skauge and F.A. Radu (also see CMAT Report UP-18-05, Hasselt University).
  28. A modified L-Scheme to solve nonlinear diffusion problemsComput. Math. Appl. Vol. 77(2019), pp. 1722-1738, with K. Mitra (also see CMAT Report UP-18-06, Hasselt University).
  29. Convergence of an MPFA finite volume scheme for two phase porous media flow with dynamic capillarityIMA J. Numer. Anal. Vol. 39 (2019), pp. 512–544, with X. Cao and S.F. Nemadjieu (see also CASA Report 15-33, Eindhoven University of Technology).
  30. A linear domain decomposition method for partially saturated flow in porous mediaComput. Methods Appl. Mech. Eng. Vol. 333 (2018), pp. 331-355, with D. Seus, K. Mitra, F.A. Radu and C. Rohde (also see CMAT Report UP-17-08, Hasselt University).
  31. Travelling wave solutions for the Richards equation incorporating non-equilibrium effects in the capillarity pressureNolinear Anal. Real World Appl. Vol. 41 (2018), pp. 232–268, with C.J. van Duijn and K. Mitra (also see Hasselt University, CMAT Report UP-17-06, Hasselt University).
  32. A robust, mass conservative scheme for two-phase flow in porous media including Hoelder continuous nonlinearitiesIMA J. Numer. Anal. Vol. 38 (2018), pp. 884–920, with F.A. Radu, K. Kumar and J.M. Nordbotten (also see Hasselt University CMAT Report UP-16-04).
  33. Fractal structures in freezing brineJ. Fluid Mech. Vol 826 (2017), pp. 975-995, with S. Alyaev, E. Keilegavlen and J.M. Nordbotten (also see Hasselt University, CMAT Report UP-16-03) .
  34. Analysis of a linearization scheme for an interior penalty discontinuous Galerkin method for two phase flow in porous media with dynamic capillarity effectsInternat. J. Numer. Methods Engrg. Vol. 112 (2017), pp. 553–577, with S. Karpinski and F.A. Radu (also see Hasselt University CMAT Report UP-16-05).
  35. Analysis of an interior penalty discontinuous Galerkin scheme for two phase flow in porous media with dynamic capillarity effectsNumer. Math. Vol. 136 (2017), pp. 249-286, with S. Karpinski (also see CASA Report 15-27, Eindhoven University of Technology).
  36. Analysis and upscaling of a reactive transport model in fractured porous media with nonlinear transmission conditionVietnam J. Math. Vol. 45 (2017), pp. 77-102,  with J. Bogers and K. Kumar (see also CASA Report 15-20, Eindhoven University of Technology/NUPUS Preprint 2015/4, University of Stuttgart).
  37. Upscaling of a tri-phase phase-field model for precipitation in porous mediaIMA J. Appl. Math. Vol. 81 (2016), pp. 898-939, with M. Redeker and C. Rohde (see also CASA Report 14-31, Eindhoven University of Technology/NUPUS Preprint 2014/6, University of Stuttgart).
  38. Homogenization of a pore scale model for precipitation and dissolution in porous mediaIMA J. Appl. Math. Vol. 81 (2016), pp. 877-897, with K. Kumar and M. Neuss-Radu (see also CASA Report 12-32, Eindhoven University of Technology).
  39. Upscaling of non-isothermal reactive porous media flow under dominant Peclet number: the effect of changing porosityMultiscale Model. Simul. Vol. 14 (2016), pp. 502–533, with C. Bringedal, I. Berre, and F.A. Radu (see also CASA Report 15-32, Eindhoven University of Technology).
  40. Degenerate two-phase porous media flow model with dynamic  capillarityJ. Differential Equations Vol. 260 (2016), pp 2418–2456, with X. Cao (see also CASA Report 15-3, Eindhoven University of Technology).
  41. Two-phase flow in porous media: dynamic capillarity and heterogeneous mediaTransp. Porous Med. Vol. 114 (2016), pp. 283–308, with C.J. van Duijn and X. Cao (see also CASA Report 15-17, Eindhoven University of Technology/NUPUS Preprint 2015/3, University of Stuttgart, 2015).
  42. Upscaling of non-isothermal reactive porous media flow with changing porosityTransp. Porous Med. Vol. 114 (2016), pp. 371-393, with C. Bringedal, I. Berre and F.A. Radu (see also CASA Report 15-16, Eindhoven University of Technology, 2015).
  43. Pore scale model for non-isothermal flow and mineral precipitation and dissolution in a thin stripJ. Comput. Appl. Math. Vol. 289 (2015), pp 346–355, with C. Bringedal, I. Berre and F.A. Radu (see also CASA Report 14-24, Eindhoven University of Technology, 2014).
  44. A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous mediaJ. Comput. Appl. Math. Vol. 289 (2015), pp 134-141, with F.A. Radu, J.M. Nordbotten and K. Kumar (see also CASA Report 14-25, Eindhoven University of Technology, 2014).
  45. Two-phase porous media flows with dynamic capillary effects and hysteresis: uniqueness of weak solutionsComput. Math. Appl. Vol. 69 (2015), pp 688-695, with X. Cao (see also CASA Report 14-27, Eindhoven University of Technology, 2014).
  46. Uniqueness of weak solutions for a pseudo-parabolic equation modeling two phase flow in porous mediaAppl. Math. Letters Vol. 46 (2015), pp 25–30, with X. Cao (see also CASA Report 14-26, Eindhoven University of Technology, 2014).
  47. Rigorous upscaling of rough boundaries for reactive flowsZAMM Z. Angew. Math. Mech.Vol. 94 (2014), pp.624-644, with K. Kumar and M. van Helvoort (see also CASA Report 12-37 Eindhoven University of Technology, 2012).
  48. Convergence analysis for a conformal discretization of a model for precipitation and dissolution in porous mediaNumer. Math.Vol. 124 (2014), pp 715-749, with K. Kumar and F.A. Radu (see also CASA Report 12-08 Eindhoven University of Technology, 2012).
  49. An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flowMath. Comp.Vol. 83 (2014), pp. 153-188, with C. Cancès and M. Vohralík (see also CASA Report 11-46 Eindhoven University of Technology, 2011).
  50. Upscaling of reactive flows in domains with moving oscillating boundariesDiscrete Contin. Dyn. Sys.Ser. SVol 7 (2014), pp. 95-111, with K. Kumar and T.L. van Noorden (see also CASA Report 12-12 Eindhoven University of Technology, 2012).
  51. Moisture transport in concrete during wetting/drying cyclesChemistry and Materials ResearchVol 5 (2013), pp. 86-90, with A. Taher, X. Cao, A.J.J van der Zanden, H.J.H Brouwers.
  52. Shock waves and two phase porous media flowsNieuw Arch. Wiskd. (5)Vol. 14 (2013), pp. 207-211, with C.J. van Duijn.
  53. Convergence analysis of mixed numerical schemes for reactive in a porous mediumSIAM J. Numer. Anal.Vol. 51 (2013), pp. 2283-2308, with K. Kumar and F.A. Radu (see also CASA Report 12-20 Eindhoven University of Technology, 2012).
  54. A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosityJ. Comput. Appl. Math.Vol. 246 (2013), pp. 74-85, with F.A. Radu, A. Muntean, N. Suciu and O. Kolditz (see also CASA Report 11-49, Eindhoven University of Technology 2011).
  55. A multiscale domain decomposition approach for chemical vapor depositionJ. Comput. Appl. Math.Vol. 246 (2013), pp. 65-73, with J. Bogers, K. Kumar, P.H.L. Notten and J.F.M. Oudenhoven (see also CASA Report 12-11, Eindhoven University of Technology, 2012).
  56. Travelling wave solutions for degenerate pseudo-parabolic equation modelling two-phase flow in porous mediaNolinear Anal. Real World Appl.Vol. 14 (2013), pp. 1361–1383, with C.J. van Duijn, Y. Fan and L.A. Peletier (see also CASA Report 10-01, Eindhoven University of Technology, 2010).
  57. Equivalent formulations and numerical schemes for a class of pseudo-parabolic equationsJ. Comput. Appl. Math.Vol. 246 (2013), pp. 86-93, with Y. Fan.
  58. A class of pseudo-parabolic equations: existence, uniqueness of weak solutions, and error estimates for the Euler-implicit discretizationMath. Methods Appl. Sci.Vol. 34 (2011), pp. 2329-2339, with Y. Fan (see also CASA Report 10-44, Eindhoven University of Technology, 2010).
  59. Effective dispersion equations for reactive flows involving free boundaries at the micro-scaleMultiscale Model. Simul.Vol. 9 (2011), pp. 29-58, with K. Kumar and T.L. van Noorden (see also CASA Report 10-43, Eindhoven University of Technology, 2010).
  60. Regularization schemes for degenerate Richards equations and outflow conditionsMath. Models Methods Appl. Sci. (M3AS)Vol. 21 (2011), pp. 1685-1712, with B. Schweizer (see also CASA Report 09-35, Eindhoven University of Technology, 2009).
  61. Mixed finite element discretization and Newton iteration for a reactive contaminant transport model with nonequilibrium sorption: convergence analysis and error estimatesComput. Geosci.  Vol. 15 (2011), pp. 431-450, with F.A. Radu (see also CASA Report 09-34, Eindhoven University of Technology, 2009).
  62. An effective model for biofilm growth in a thin stripWater Resour. Res.Vol. 46 (2010), W06505, doi:10.1029/2009WR008217, with T.L. van Noorden, A. Ebigbo and R. Helmig (see also Preprint 2009/5,  NUPUS, 2009).
  63. Convergence analysis of a vertex-centered finite volume scheme for a copper heap leaching modelMath. Methods Appl. Sci.Vol. 33 (2010), pp. 1059-1077, with E. Cariaga, F. Concha and M. Sepulveda.
  64. Newton method for reactive solute transport with equilibrium sorption in porous mediaJ. Comput. Appl. Math.Vol. 234 (2010), pp. 2118-2127, with F.A. Radu.
  65. Error estimates for the finite volume discretization for the porous medium equationJ. Comput. Appl. Math.Vol. 234 (2010), pp. 2135-2142, with M. Sepulveda, O.P Vera Villagran and F.A. Radu (see also CASA Report 08-13, Eindhoven University of Technology, 2008).
  66. Analysis of an Euler implicit - mixed finite element scheme for reactive solute transport in porous media, Numer. Methods Partial Differential EquationsVol. 26 (2010) pp. 320 - 344, with F.A. Radu and S. Attinger (see also CASA Report 08-06, Eindhoven University of Technology, 2008).
  67. Horizontal redistribution of fluids in a porous medium: the role of interfacial area in modeling hysteresisAdv. Water Resour.Vol. 32 (2009), pp. 383-390, with C.J. van Duijn, J. Niessner and S.M. Hassanizadeh (see also Preprint 2008/3,  NUPUS, 2008).
  68. Numerical schemes for a pseudo-parabolic Burgers equation: discontinuous data and long-time behaviourJ. Comput. Appl. Math.Vol. 224 (2009),  pp. 269-283, with C.M. Cuesta (see also CASA Report 07-22, Eindhoven University of Technology, 2007).
  69. Effective dispersion equations for reactive flows with dominant Peclet and Damkohler numbersAdvances in Chemical EngineeringVol. 34 (2008), pp. 1-45, with C.J. van Duijn, A. Mikelic and C. Rosier (see also CASA Report 07-20, Eindhoven University of Technology, 2007).
  70. A Stefan problem modelling dissolution and precipitation in porous mediaIMA J. Appl. Math.Vol. 73 (2008), pp. 393-411, with T.L. van Noorden (see also CASA Report 06-30, Eindhoven University of Technology, 2006).
  71. Error estimates for a mixed finite element discretization of some degenerate parabolic equationsNumer. Math.Vol 109 (2008), pp. 285-311, with F.A. Radu and P. Knabner (see also Preprint no 12/07, Max Planck-Institute of Mathematics, Leipzig, 2007).
  72. A numerical scheme for the pore scale simulation of crystal dissolution and precipitation in porous mediaSIAM J. Numer. Anal.Vol. 46 (2008), pp. 895-919, with V.M. Devigne, C.J. van Duijn, and T. Clopeau (see also CASA Report 06-28, Eindhoven University of Technology, 2006).
  73. Crystal dissolution and precipitation in porous media: L1-contraction and uniqueness, Discrete Contin. Dyn. Syst. supplement 2007 (now as Conference Publications, 2007, 2007 (Special)) pp. 1013-1020, with T.L. van Noorden and M. Röger (see also CASA Report 06-32, Eindhoven University of Technology (2006)).
  74. A new class of entropy solutions of the Buckley-Leverett equationSIAM J. Math. Anal. Vol. 39 (2007), pp. 507-536, with C.J. van Duijn and L.A. Peletier (see also MAS-E0503 Report, CWI, Amsterdam (2005); also appeared as MI 2005-03 Report, Mathematical Institute, Leiden University).
  75. Effective equations for two-phase flow in porous media: the effect of trapping at the micro scaleTransp. Porous Med. Vol. 69 (2007), pp. 411-428, with C.J. van Duijn, H. Eichel and R. Helmig (see also CASA Report 05-34, Eindhoven University of Technology, 2005).
  76. Crystal dissolution and precipitation in porous media: pore scale analysisJ. Reine Angew. Math. Vol. 577 (2004), pp. 171-211, with C.J. van Duijn (see also RANA Preprint 03-27, Eindhoven University of Technology, 2003).
  77. Mixed finite elements for the Richards' equation: linearization procedureJ. Comput. Appl. Math.Vol. 168, No. 1-2 (2004), pp. 365-373, with F.A. Radu and P. Knabner (see also Preprint No. 293, IAM, University of Erlangen, 2002).
  78. Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards' equationSIAM J. Numer. Anal.Vol. 42, No 4 (2004), pp. 1452-1478, with F.A. Radu and P. Knabner (see also RANA Preprint 02-06, Eindhoven University of Technology, 2002).
  79. Error estimates for a time discretization method for the Richards' equationComput. Geosci. Vol. 6, No. 2 (2002), pp. 141-160 (see also RANA Preprint 01-16, Eindhoven University of Technology, 2001, and related information.
  80. Effective equations for two-phase flow with trapping on the micro scaleSIAM J. Appl. Math.Vol. 62, No. 5 (2002), pp. 1531-1568, with C.J. van Duijn and A. Mikelic (see also RANA Preprint 01-02, Eindhoven University of Technology, 2001).
  81. A numerical approach to degenerate parabolic equationsNumer. Math., Vol. 92, No. 2 (2002), pp. 357-381, with W.A. Yong.
  82. A stabilized Chebyshev-Galerkin approach for the biharmonic operator*, Bul. Stiint. Univ. Baia-Mare Ser. B, (now Carpathian J. Math.Vol. XVI (2000), pp. 335 - 344 (you can also download it from here).
  83. Use of weighted least squares splines for calibration in analytical chemistryJ. Chem. Inf. Comput. Sci.No. 40 (2000), pp. 91-98, with V. Pop, S. Cobzac, and C. Sarbu.
  84. On the existence and uniqueness of a solution for an elliptic problem*, Studia Univ. Babes-Bolyai Math.No. 45 (2000), pp. 97-107, with W.A. Yong.
  85. A stabilized approach to the Chebyshev-tau method*, Studia Univ. Babes-Bolyai Math., 42 (1997), pp. 67-79.
  86. Weighted least squares spline approximation, Babes Bolyai Univ. Fac. Math. Comput. Sci. Res. Semin. Prepr., No. 6 (1996), pp. 72-83.
  87. On the Chebyshev-tau approximation for some singularly perturbed two-point boundary value problems - numerical experimentsRev. Anal. Numer. Theor. Approx. (now Journal of Numerical Analysis and Approximation Theory), No. 24 (1995), pp. 117-124, with C.I. Gheorghiu.
  88. On a mean value theorem with divided differencesBul. Stiint. Univ. Baia-Mare Ser. B, (now Carpathian J. Math.), Vol. XI (1995), pp. 75-88 (you can also download it from here).
  89. On parallel execution in LOOP-EXIT schemesBul. Stiint. Univ. Baia-Mare Ser. B, (now Carpathian J. Math.)Vol. VIII (1992), pp. 77-87 (you can also download it from here).
  90. Proprietati de medie ale functiilor reale (Mean value properties of real functions, in romanian), Lucr. Semin. Didact. Mat., No. 7 (1990-1991), pp. 97-108.

Book contributions and proceedings:

  1. A numerical scheme for two-scale phase-field models in porous media, Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. 364-373, with M. Bastidas Olivares, S. Sharmin, C. Bringedal (see also CMAT Report UP-21-04, Hasselt University).
  2. Error estimates for the gradient discretisation of degenerate parabolic equation of porous medium type, in Polyhedral Methods in the GeosciencesSEMA SIMAI Springer Series, Vol. 27, Springer International Publishing, 2021, pp. 37-72, with C. Cances, J. Droniou, C. Guichard, G. Manzini, M. Bastidas Olivares (see also CMAT Report UP-20-04, Hasselt University).
  3. Numerical simulation of a phase-field model for reactive transport in porous media, in Numerical Mathematics and Advanced Applications - ENUMATH 2019, Lecture Notes in Computational Science and Engineering, Vol. 139, Springer International, 2021, pp. 93-102, with M. Bastidas, C. Bringedal (see also CMAT Report UP-20-02, Hasselt University).
  4. An efficient numerical scheme for fully coupled flow and reactive transport in variably saturated porous media including dynamic capillary effects, in Numerical Mathematics and Advanced Applications - ENUMATH 2019, Lecture Notes in Computational Science and Engineering, Vol. 139, Springer International, 2021, pp. 563-571, with D. Illiano, F.A. Radu (see also CMAT Report UP-19-15, Hasselt University).
  5. A linear domain decomposition method for non-equilibrium two-phase flow models, in Numerical Mathematics and Advanced Applications - ENUMATH 2019, Lecture Notes in Computational Science and Engineering, Vol. 139, Springer International, 2021, pp. 145-153, with S.B. Lunowa, B. Koren (see also CMAT Report UP-19-14, Hasselt University).
  6. Dynamic and weighted stabilizations of the L-scheme applied to a phase-field model for fracture propagation, in Numerical Mathematics and Advanced Applications - ENUMATH 2019, Lecture Notes in Computational Science and Engineering, Vol. 139, Springer International, 2021, pp. 1177-1184, with C. Engwer, T. Wick (see also CMAT Report UP-19-13, Hasselt University).
  7. Iterative linearisation schemes for doubly degenerate parabolic equations, in Numerical Mathematics and Advanced Applications - ENUMATH 2017, Lecture Notes in Computational Science and Engineering, Vol. 126, Springer International, 2019, pp. 49-63, with J.W. Both, K. Kumar, J.M. Nordbotten and F.A. Radu (see also CMAT Report UP-17-11, Hasselt University).
  8. Numerical simulation of biofilm formation in a microchannel, in Numerical Mathematics and Advanced Applications - ENUMATH 2017, Lecture Notes in Computational Science and Engineering, Vol. 126, Springer International, 2019, pp. 799-807, with D. Landa-Marban, K. Kumar and F.A. Radu.
  9. Non-equilibrium Models for Two Phase Flow in Porous Media: the Occurrence of Saturation Overshoots, in ICAPM 2013, Proceedings of the 5th International Conference on Applications of Porous Media, Cluj University Press, 2013, pp. 59-70, with C.J. van Duijn, S.M. Hassanizadeh, and P.A. Zegeling.
  10. Numerical analysis for an upscaled model for dissolution and precipitation in porous media, in Numerical Mathematics and Advanced Applications 2011, Proceedings of ENUMATH 2011, A. Cangiani, R.L. Davidchack, E. Georgoulis, A.N. Gorban, J. Levesley, M.V. Tretyakov (Eds.),Springer-Verlag Heidelberg, 2013, pp. 703-711, with K. Kumar and F. A. Radu.
  11. Error estimates for an Euler implicit-mixed finite element scheme for reactive transport in saturated/unsaturated soilPAMM - Proc. Appl. Math. Mech.Vol. 7 (2007), pp. 1024705-1024706, with Florin A. Radu, Sabine Attinger, Peter Knabner.
  12. On the homogenization of the Buckley-Leverett equation including trapping effects at the micro scalePAMM - Proc. Appl. Math. Mech.Vol. 7 (pp. 2007), 1024701-1024702, with B. Schweizer.
  13. Effective Two-Phase Flow Models Including Trapping Effects at the Micro Scale, in Progress in Industrial Mathematics at ECMI 2006, L.L. Bonilla, M. Moscoso, G. Platero, J.M. Vega (Eds.), Mathematics in Industry, Vol. 12, Springer-Verlag Heidelberg, 2008, pp. 333 - 339, with C.J. van Duijn, H. Eichel and R. Helmig.
  14. A Numerical Scheme for the Micro Scale Dissolution and Precipitation in Porous Media, in Numerical Mathematics and Advanced Applications, A. Bermudez de Castro, D. Gomez, P. Quintela, P. Salgado, P. (Eds.), Springer-Verlag Heidelberg, 2006, pp. 362 - 370, with V.M. Devigne, C.J. van Duijn and T. Clopeau.
  15. Newton Type Methods for the Mixed Finite Element Discretization of Some Degenerate Parabolic Equations, in Numerical Mathematics and Advanced Applications, A. Bermudez de Castro, D. Gomez, P. Quintela, P. Salgado (Eds.), Springer-Verlag Heidelberg, 2006, pp. 1192 - 1200, with F. A. Radu and P. Knabner.
  16. Numerical schemes for degenerate parabolic problems, in Progress in Industrial Mathematics at ECMI 2004, A. Di Bucchianico, R.M.M. Mattheij, M. A. Peletier (Eds.), Mathematics in Industry, Vol. 8, Springer-Verlag Heidelberg, 2006, pp. 513 - 517.
  17. Non-classical shocks for the Buckley-Leverett equation: degenerate pseudo-parabolic regularisation, in Progress in Industrial Mathematics at ECMI 2004, A. Di Bucchianico, R.M.M. Mattheij, M. A. Peletier (Eds.), Mathematics in Industry, Vol. 8, Springer-Verlag Heidelberg, 2006, pp. 569 - 573, with C.M. Cuesta and C.J. van Duijn.
  18. A Microscopic Description of Crystal Dissolution and Precipitation, in IUTAM Symposium on Physicochemical and Electromechanical Interactions in Porous Media, J.M. Huyghe, P.A.C. Raats, S.C. Cowin (Eds.), Solid Mechanics and Its Applications, Vol. 125, Springer-Verlag Heidelberg, 2006, pp. 343 - 348, with C.J. van Duijn.
  19. Micro-scale analysis of crystal dissolution and precipitation in porous media, in Proceedings of the Workshop on Modelling and Simulation in Chemical Engineering, A. E. Rodrigues, P. Oliveira, J. A. Castro, J. ddA. Ferreira and M. do Carmo Coimbra (Eds.), Centro Internacional de Matemática (CIM), Monographs and Proceedings No. 22, 2003, with C.J. van Duijn
  20. Analysis of a discretization method for the Richards equation, in Analysis and Simulation of Multifield Problems, W. Wendland, M. Efendiev (Eds.), Lecture Notes in Applied and Computational Mechanics, Vol. 12, Springer-Verlag Heidelberg, 2003, pp. 171-178.
  21. The Euro Diffusion Project**, Proceedings of the forty-second European Study Group with Industry, G. M. Hek (ed.), CWI Syllabus 51 CWI, Amsterdam (2002), pp. 41 - 57, with P. van Blokland, L. Booth, K. Hiremath, M. Hochstenbach, G. Koole, M. Quant, D. Wirosoetisno.
  22. Order of Convergence Estimates in Time and Space for an Implicit Euler/Mixed Finite Element Discretization of Richards' Equation by Equivalence of Mixed and Conformed Approaches ALGORITMY 2002, 16th Conference on Scientific Computing (Proceedings of contributed papers and posters), A. Handlovicova, Z. Kriva, K. Mikula, D. Sevcovic (eds.), Slovak University of Technology, Bratislava (2002), pp. 58 - 65, with F. A. Radu and P. Knabner.
  23. Effective Buckley-Leverett Equations by Homogenization, in Progress in Industrial Mathematics at ECMI 2000, M. Anile, V. Capasso, A. Greco (Eds.), Mathematics in Industry, Vol. 1, Springer-Verlag Heidelberg, 2002, pp. 42-51 (see also RANA Preprint 01-01, Eindhoven University of Technology, 2001), with C.J. van Duijn and A. Mikelic.
  24. A maximum principle based numerical approach to porous medium quations*,ALGORITMY'97, Proceedings of the 14 Conference on Scientific Computing, A. Handlovicova, M. Komornikova, K. Mikula (eds.), Slovak Technical University, Bratislava (1997), pp. 207 - 218, with W.A. Yong.
  25. A modified Chebyshev-tau method for a hydrodynamic stability problem*, Approximation and Optimization, Proceedings of the International Conference on Approximation and Optimization, D.D. Stancu, Gh. Coman, W.W. Breckner, P. Blaga (eds.), Transilvania Press, Cluj-Napoca, vol. II (1997), pp. 119-126, with C.I. Gheorghiu.
  26. A Chebyshev-Galerkin method for fourth order problems*, Approximation and Optimization, Proceedings of the International Conference on Approximation and Optimization, D.D. Stancu, Gh. Coman, W.W. Breckner, P. Blaga (eds.), Transilvania Press, Cluj-Napoca, vol. II (1997), pp. 217-220, with C.I. Gheorghiu.
  27. Asupra unor teoreme de medie (On some mean value theorems)

Reports:

Hasselt University, CMAT Reports

  1. Rigorous derivation of an effective model for coupled Stokes advection, reaction and diffusion with freely evolving microstructure, arXiv:2404.01983, with M. Gahn, M.A. Peter, D. Wiedemann.
  2. Robust time-discretisation and linearisation schemes for singular and degenerate evolution systems modelling biofilm growth, arXiv:2404.00391, with R.K.H. Smeets, K. Mitra, S. Sonner.

Eindhoven University of Technology, CASA Reports

  1. A convergent mass conservative numerical scheme based on mixed finite elements for two-phase flow in porous media, CASA Report 15-39, Eindhoven University of Technology, with F.A. Radu, K. Kumar, J.M. Nordbotten.
  2. Existence of weak solutions to a degenerate pseudo-parabolic equation modeling two-phase flow in porous media, CASA Report 10-75, Eindhoven University of Technology (2010), with C. Cancès, C. Choquet and Y. Fan.
  3. A note on the solution of a coupled parabolic-elliptic system arising in linear stability analysis of gravity-driven porous media flow, CASA Report 04-30, Eindhoven University of Technology (2004), with G.J.M. Pieters and C.J. van Duijn.

University of Heidelberg, IWR Preprints

  1. Regularization methods in the numerical analysis of some degenerate parabolic equations, Preprint 98-43 (SFB 359), IWR, University of Heidelberg (1998) (my Ph'D thesis, as gzipped .ps, or as gzipped .pdf file).
  2. A numerical approach to porous medium equations, Preprint 96-50 (SFB 359), IWR, University of Heidelberg (1996), with W.A. Yong (you can find the file here).

Others:

  1. Editor, "Multiscale Coupled Models for Complex Media: From Analysis to Simulation in Geophysics and Medicine", Report No. 4 (2022),  Mathematisches Forschungsinstutut Oberwolfach, Oberwolfach Reports 19 (2022), pp. 171–229, Editors: M. Peszynska, I.S. Pop, B.  Wohlmuth, Z. Yosibash (DOI: 10.14760/OWR-2022-4).
  2. Editorial,  Comput. Geosci.  Vol. 23 (2019), pp. 202-205, with H. Class, P. Knabner, F. A. Radu.
  3. Editorial, Advanced COmputational Methods in ENgineering (ACOMEN 2017),  Comput. Math. Appl. Vol. 77(2019), pp. 1423-1424, with M. Slodicka. K. Van Bockstal, C. Geuzaine, R.H. De Staelen.
  4. Naar een Platform Wiskunde Vlaanderen, Vector, Nr, 1 (2018), pp. 37-44, with B. De Moor, A. Dooms, P. Igodt, E. Jespers, G. Samaey, B. Seghers, S. Vaes, J. van der Jeugt, W. Vanroose
  5. Editor, "Reactive Flows in Deformable, Complex Media", Report No. 39 (2018),  Mathematisches Forschungsinstutut OberwolfachOberwolfach Reports 15 (2018), pp. 2385–2473, Editors: M. Gerritsen, I.S. Pop, F.A. Radu, B.  Wohlmuth (DOI: 10.4171/OWR/2018/39).
  6. Editor, "Reactive Flows in Deformable, Complex Media", Report No. 43 (2014),  Mathematisches Forschungsinstutut OberwolfachOberwolfach Reports 11 (2015), pp. 2409–2468, Editors: M. Gerritsen, J. M. Nordbotten, I.S. Pop, B.  Wohlmuth (DOI: 10.4171/OWR/2014/43).
  7. Dynamic capillarity models for porous media flows: travelling waves and non-classical shocks, in Oberwolfach Report 10(2) "Hyperbolic Techniques for Phase Dynamics", Report No. 29 (2013), Mathematisches Forschungsinstut Oberwolfach, pp.1748-1751, with C.J. van Duijn, Y. Fan, L.A. Peletier (DOI: 10.4171/OWR/2013/29).
  8. Editorial, Special Section "Multiscale Problems in Science and Technology. Challenges to Mathematical Analysis and Perspectives"Nolinear Anal. Real World Appl., Vol. 15 (2014), pp. 263–265, with N. Antonić, V. Capasso, W. Jäger, A. Mikelić and M. Neuss-Radu.
  9. Editorial, Special issue on “Mathematics of Porous Media” dedicated to Professor C.J. van Duijn on the occasion of his 60th anniversary, Comput. Geosci.  Vol. 17 (2013), pp. 443-446, with P. Knabner and A. Mikelić.
  10. Editorial, Special issue on Multi-scale problems in sustainable resource managementIMA J. Appl. MathVol. 77(2012), pp. 727-728, with C.J. van Duijn, M.A. Peletier, S.M. Hassanizadeh, A. Mikelic and B. Schweizer.
  11. An existence result related to two-phase flows with dynamic capillary pressure, Proceedings of the 4th International Conference on Approximation Methods and Numerical Modeling in Environment and Natural Resources (MAMERN'11, Saidia, Morocco, 2011), Granada, Universidad de Granada, 2011, pp. 1-4, with C. Cancès, C. Choquet, Y. Fan.
  12. Crystal dissolution and precipitation in porous media: the case of fixed geometry, Proceedings of the XVI International Conference on Computational Methods in Water Resources, Copenhagen, Denmark, 2006, with C.J. van Duijn, V.M. Devigne, T.L. van Noorden and T. Clopeau.
  13. Crystal dissolution and precipitation in porous media: variable geometry, Proceedings of the XVI International Conference on Computational Methods in Water Resources, Copenhagen, Denmark, 2006, with T.L. van Noorden and C.J. van Duijn.
  14. Dissolution and precipitation processes in porous media: a pore scale model, Oberwolfach Report 2(4) "Reactive Flow and Transport Through Complex Systems", Report No. 49/2005, Mathematisches Forschungsinstut Oberwolfach, pp. 2814-2816, with C.J. van Duijn and V.M. Devigne (DOI: 10.4171/OWR/2005/49).
  15. Finite element approximation of saturated/unsaturated flow and reactive solute transport in porous media, Oberwolfach Report 2(1) "Gemischte und nicht-standard Finite-Elemente-Methoden mit Anwendungen", Report no. 5/2005, Mathematisches Forschungsinstut Oberwolfach, pp. 286-289, with F.A. Radu and P. Knabner (DOI: 10.4171/OWR/2005/05).
  16. Moneda europeana vazuta de un matematician (The european currency as seen by a mathematician; in Romanian), Esential No. 7 (2003).
  17. Analysis of a discretization method for Richards' equation, in Proceedings of the Second International Conference on Advanced Computational Methods in Engineering, ACOMEN 2002, M. Hogge, J.-P. Ponthot, L. Stainier, H. De Schepper, R. Van Keer and E. Noldus (Eds.), 2002 (available on CD), with F.A. Radu and P. Knabner.
  18. Flow simulation in unsaturated, heterogeneous soils, Shaping the Future Forum, Global Dialogue 3: Science and Technology - Thinking the Future, Expo 2000 Hannover (2000).
  19. Metoda elementului finit: aplicatii la ecuatia mediului poros (The finite element method applied to the porous medium equation;p in Romanian), report, Babes-Bolyai University Cluj-Napoca, Facultyof Mathematics and Informatics, Cluj-Napoca, (1997).
  20. Aproximarea numerica a ecuatiilor diferentiale cu ajutorul metodelor spectrale (Numerical approximation of differential equations with spectral methods; in Romanian), report, Babes-Bolyai University Cluj-Napoca, Faculty of Mathematics and Informatics, Cluj-Napoca, (1995).
  21. Analiza Numerica. Lucrari de laborator (Numerical analysis. Laboratory exercises; in Romanian), lito, Babes-Bolyai University Cluj-Napoca, Faculty of Mathematics and Informatics, Cluj-Napoca, (1994), with P. Blaga, Gh. Coman, R. Trambitas and D. Vasaru.

*Gzipped postscript version of the submitted manuscript 
**Gzipped postscript version of the corresponding pages in the book