The mass adoption of BIPV and PIPV solutions can only be achieved by developing cost-efficient and sustainable thin-film technologies with unbeatable aesthetic functionalities, mechanical flexibility and optical tunability. The EU-funded CUSTOM-ART project aims to develop the next generation of BIPV and PIPV modules based on abundant thin-film materials such as kesterites.
DISRUPTIVE KESTERITES-BASED THIN FILM TECHNOLOGIES CUSTOMISED FOR CHALLENGING ARCHITECTURAL AND ACTIVE URBAN FURNITURE APPLICATIONS
Building- and product-integrated photovoltaics (BIPV and PIPV) are identified as key enabling technologies to make 'near-zero energy buildings' and 'net-zero energy districts' a reality. The mass adoption of BIPV and PIPV solutions can only be achieved by developing cost-efficient and sustainable thin-film technologies with unbeatable aesthetic functionalities, mechanical flexibility and optical tunability. The EU-funded CUSTOM-ART project aims to develop the next generation of BIPV and PIPV modules based on abundant thin-film materials such as kesterites. The project will bring flexible and semi-transparent solar modules to a higher level of maturity (TRL 7), demonstrating very competitive conversion efficiencies (20 % at cell and 16 % at module levels) and increased durability (over 35 years), at a reduced production cost (less than EUR 75/m2).
Project lead:
Project partners:
More information can be found on the project website.
Funding: This project has received funding from the European Union’s Horizon 2020 Framework Programme under grant agreement No 852892.